
MATH 147: SPRING 2021 EXAM 2 SOLUTIONS

Calculation Problems.
1. Using a Lagrange multiplier, find the point P on the plane 2x + 4y + 6z = 32 such that the square of
the distance from P to the point (1,−1, 1) is the least among all points on the plane and determine the
corresponding value. What does this tell you about the least distance from points on the plane to (1, -1, 1)?
(20 points)
Solution. We need to minimize the function f(x, y, z) = (x−1)2+(y+1)2+(z−1)2 subject to the constraint
g(x, y, z) = 2x+ 4y + 6z = 32. Setting ∇f = λ∇g, we have

2(x− 1) = λ2

2(y + 1) = λ4

2(z − 1) = λ6.

from which we see, x = λ+ 1, y = 2λ− 1, z = 3λ+ 1. Substituting into the constraint equation, we have,
2(λ+ 1) + 4(2λ− 1) + 6(3λ+ 1) = 32.

From this, we easily get λ = 1. Thus, x = 2, y = 1, z = 4. Therefore, (2, 1, 4) is the point on the plane
closest to (1, -1, 1) and the least distance squared we seek is

f(2, 1, 4) = (2− 1)2 + (1 + 1)2 + (4− 1)2 = 14.

Note that what this shows is that the point (2,1,4) is the point on the given plane closest to (1,-1, 1) and
the distance between these pints is

√
14.

2. Find the volume of the region in R3 between the planes z = x and z = y that lies over the square
D : [−1, 1]× [−1, 1]. (20 points).
Solution. We first note that for points (x, y) in the xy-plane, the plane z = y lies above the plane z = x, if
(x, y) lies above the line y = x, and the plane z = x lies above the plane z = y, if (x, y) lies below the line
y = x. Thus, the volume we seek is∫ 1

−1

∫ 1

x

y − x dy dx+

∫ 1

−1

∫ x

−1

x− y dy dx.

Working the first of the double integrals we get∫ 1

−1

∫ 1

x

y − x dy dx =

∫ 1

−1

(
1

2
y2 − xy)

∣∣∣∣y=1

y=x

dx

=

∫ 1

−1

(
1

2
− x)− (

1

2
x2 − x2) dx

=

∫ 1

−1

1

2
− x+

x2

2
dx

= (
x

2
− x2

2
+

x3

6
)

∣∣∣∣1
−1

=
4

3
.

A similar calculation (or symmetry) shows that the second double integral above is also 4
3 . Thus, the volume

of the specified region is 8
3 .
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3. Calculate
∫ ∫

D
(x2 + y2)−2 dA, where D : {(x, y) ∈ R2 | x2 + y2 ≥ 9}. (15 points)

Solution. Let DR denote the region in R2 define by: 9 ≤ x2 + y2 ≤ R2. Then, if the limit below exists, it
equals

∫ ∫
D
(x2 + y2)−2 dA.

lim
R→∞

∫ ∫
DR

(x2 + y2)−2 dA = lim
R→∞

∫ 2π

0

∫ R

3

((r sin(θ))2 + (r sin(θ))2)−2 r dr dθ

= lim
R→∞

∫ 2π

0

∫ R

3

r−3 dr dθ

= lim
R→∞

∫ 2π

0

−r−2

2

∣∣∣∣r=R

r=3

dθ

= lim
R→∞

2π · (−R−2

2
+

1

18
)

=
π

9
.

Short Answer.

4. Explain how you would calculate
∫ 2

0

∫ 3

x2−1
e(y+1)

3
2 dy dx and why this works, though you do not have to

calculate a double integral. (15 points)

Solution. As given, we cannot antidifferentiate the integrand with respect to y. Since the given integral is∫ ∫
D
e(y+1)

3
2 dA, for D

by Fubini’s theorem we can change the order of integration, thereby getting
∫ 3

0

∫√
y+1

0
e(y+1)

3
2 dx dy. When

we integrate with respect to x we get∫ 2

0

{xe(y+1)
3
2 }

∣∣∣∣x=
√
y+1

x=0

dy =

∫ 3

0

√
y + 1e(y+1)

3
2 dy,

which can easily be solved by u-substitution.

5. Let G(u, v) = (3u+ 5v + 1, 7u+ 2v + 4) be a transformation from the uv-plane to the xy-plane.
(i) If D0 is the square [−1, 1]× [−1, 1] in the uv-plane, describe the region D in the xy-plane obtained

by applying G(u, v) to D0. You do not have to justify your answer. (7.5 points)
(ii) If F (x, y) is the inverse transformation of G(u, v), find Jac(F ).(7.5 points)

Solution. For Part (i), The transformation G(u, v) is the linear transformation T (u, v) = (3u+ 5v, 7u+ 2v)
followed by a translation that takes the origin to (1,4). Thus, D is the parallelogram (centered at (1,4)) with
vertices (9, 13), (-1,9), (3, -1), (-7, -5), which are obtained by evaluating G(u, v) at the vertices of D0.
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For (ii), Jac(G) = det
(
3 5
7 2

)
= −29, therefore Jac(F ) = 1

Jac(G) = − 1
29 .

6. For the region D bounded by the lines y = 0, y = x
2 and x+ y = 1, find a change of variables that makes

it possible to calculate
∫ ∫

D

√
x+y
x−2y dA, and then set up the resulting double integral. Do not calculate the

double integral. (15 points)
Solution. We first note that D is the triangle in the xy-plane with vertices (0,0), (1, 0), ( 23 ,

1
3 ). We want

to have u = x + y and v = x − 2y, which will enable us to antidifferentiate the integrand
√

u
v , so we think

of these equations as as the coordinates of F (x, y), the inverse of our change of variables transformation.
Solving for x, y in terms of u, v gives x = 2u+v

3 and y = u−v
3 . Thus, we take G(u, v) = ( 2u+v

3 , u−v
3 ). Since

x + y = 1 is one edge of D and u = x + y, F transforms this line to u = 1. Similarly, since v = x − 2y, F
transforms the line y = x

2 to the line v = 0. Finally, when y = 0, u = x = v, so that F transforms the line
y = 0 to the line v = u. It follows that F transforms D to the triangle in the uv-plane having vertices (0,0),
(1,0), (1,1). Since the absolute value of the Jacobian of G is easily seen to be 1

3 , it follows that∫ ∫
D

√
x+ y

x− 2y
dA =

∫ 1

0

∫ u

0

√
u

v

1

3
dv du.

Note that the inner integral is an improper integral, but a convergent proper integral, so it is easy to obtain
a final answer.

Optional Bonus Problem. Let D denote the region in R2 between the ellipses E1 : (x−4)2

9 + (y+7)2

16 = 1

and E2 : (x−4)2

36 + (y+7)2

64 = 1. Calculate
∫ ∫

D

√
16(x− 4)2 + 9(y + 7)2 dA. (15 points)

Solution. We will transform the ellipses to circles centered at the origin in the uv-plane, and then use polar
coordinates. First use the transformation G(u, v) = (3u+4, 4v− 7) = (x, y), which has Jac(G) = 12. Notice
that if we substitute these equations into the equations for the ellipses, E1 becomes the circle C1 : u2+v2 = 1
and E2 becomes the circle C2 : u2 + v2 = 4. In addition, the integrand becomes 12(u2 + v2)

1
2 . Thus, if we

let D0 denote the region in the uv-plane between the circles C1 and C2, we have∫ ∫
D

√
16(x− 4)2 + 9(y + 7)2 dA =

∫ ∫
D0

12(u2 + v2)
1
2 12 dA

= 144

∫ 2π

0

∫ 2

1

r · r dr dθ

= 144

∫ 2π

0

r3

3

∣∣∣∣r=2

r=1

dθ

= 144 · 7
3
· 2π

= 672π.
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